INVESTOR PRESENTATION

TOMRA SYSTEMS ASA 23 October 2017 © TOMRA

THE DAWN OF THE RESOURCE REVOLUTION

THE CHALLENGE:

THE OPPORTUNITY:

3 billion more middle-class consumers expected to be in the global economy by 2030

Up to **\$1.1 trillion**

spent annually on resource subsidies

Making A work h worth living for our children!

\$2.9 trillion of savings in

2030 from capturing the resource productivity potential

At least \$1 trillion

more investment in the resource system needed each year to meet future resource demands

SOURCE: McKinsey

THE WORLD POPULATION AND STANDARD OF LIVING IS INCREASING DRAMATICALLY

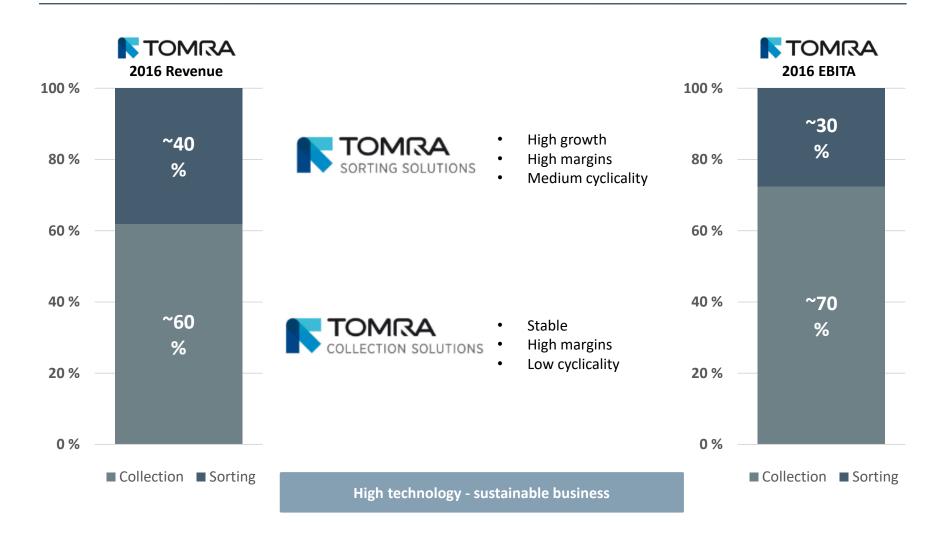
WORLD RESOURCES ARE UNDER UNPRECEDENTED PRESSURE

RESOURCE PRODUCTIVITY MUST INCREASE TO ENSURE SUSTAINABLE DEVELOPMENT

TOMRA creates sensor-based solutions for optimal resource productivity

LEADING THE RESOURCE REVOLUTION

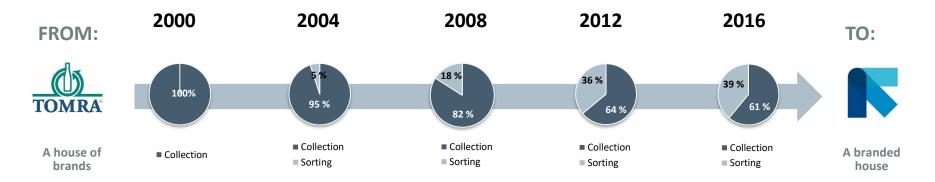
FROM PURPOSE INTO PROFITS AND PROFITS INTO PROGRESS, TOMRA IS **TRANSFORMING** WHAT IT MEANS TO BE RESOURCEFUL.



- Our solutions, in use around the globe, helped keep ~25 millions of tons of CO₂ from being released into the atmosphere in 2016
- ~35 bn used beverage containers are captured every year through our reverse vending machines
- Our steam peelers process ~15
 million tons of potatoes per year
 with a 1% yield improvement
 over other alternatives
- ~715,000 tons of metal are recovered every year by our metalrecycling machines

TOMRA IN SHORT

CREATING VALUE THROUGH TWO STRONG BUSINESS AREAS*



7

THE TOMRA TRANSFORMATION JOURNEY

TOMRA WORLDWIDE

TOMRA'S TWO BUSINESS AREAS

	FOOD*		
Share of '16 sales	~24%		
Employees	580		
Customers	Food growers, packers and processors		
Market share	~25%		

RECYCLING

Share of '16 sales	~11%
Employees	175
Customers	Material recovery facilities, scrap dealers, metal shredder operators
Market share	~55-65%

	MINING	
Share of '16 sales	~3%	
Employees	60	
Customers	Mining companies	
Market share	~40-60%	

	TOMRA SORTING GROUP FUNCTIONS & SHARED STAFF
Employees	140

REVERSE VENDING

~47%

1,310

Grocery retailers

~75%

MATERIAL RECOVERY

~15% 500

Grocery retailers and beverage manufacturers

~60% in USA (markets served)

10

TOMRA INSTALLED BASE

REVERSE VEN	IDING	RECY	CLING	MINING	6	FOO	D*
Nordic	~15,300	EMEA	~3,500	Europe	~10	EMEA	~
Germany	~29,500	Americas	~700	US / Canada	~30	Americas	~:
Other Europe	~14,200	Asia	~600	Australia	~5	Asia	
North America	~15,900	Other	~20	South Africa	~25		
Rest of the world	~3,500			Other	~30		
TOTAL	~78,400	TOTAL	~4,820	TOTAL	~100	TOTAL	~

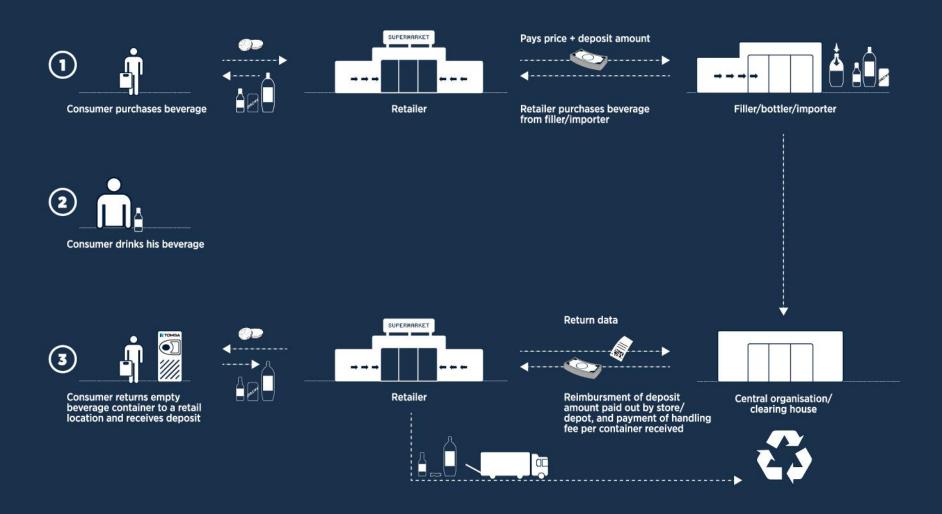
Not including machines sold on OEM agreements. 2016 recount of TSS portfolio

11

USING THE POWER OF BUSINESS TO DO GOOD

TOMRA IN DEPTH

TOMRA Collection Solutions



REVERSE VENDING ADVANTAGES

TOMRA

RECYCLING OF BEVERAGE PACKAGING IN A DEPOSIT SYSTEM

ELEMENTS OF A MODERN REVERSE VENDING SYSTEM

Data administration

TOMRA

THE USED BEVERAGE CONTAINER RECYCLING VALUE CHAIN

Generic used beverage container (UBC) recycling value chain

RVM-based UBC recycling value chain

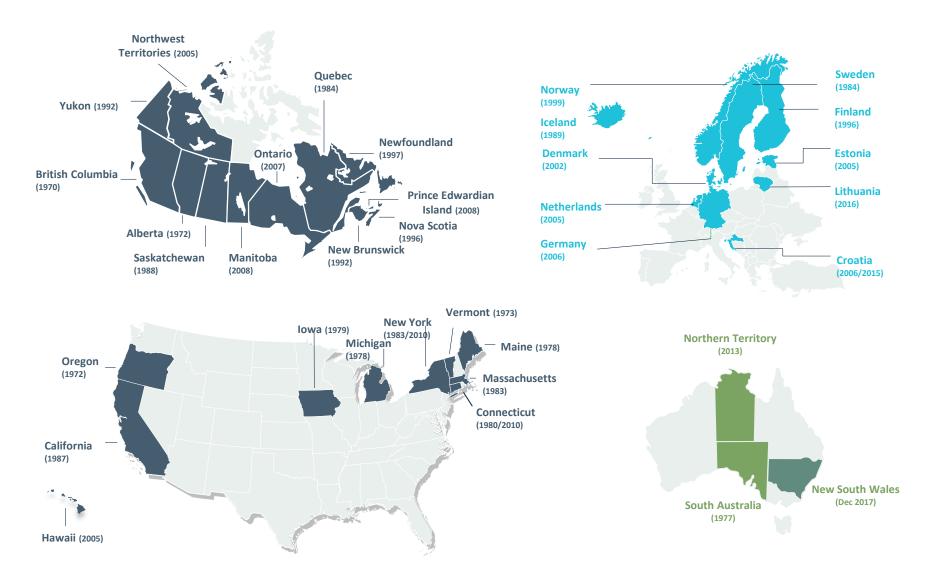
T-9: THE FIRST OF A NEW GENERATION OF MACHINES

- In fourth quarter 2013, TOMRA presented the first machine of the **new generation** of machines to come
- T-9 features the first **360 degree recognition** system applied in an RVM and a completely new industrial design
- The machine is **faster**, **cleaner** and **takes all** types of beverage containers
- The launch has been successful
 - Several machines already installed in core markets
 - Key product for replacement sale in e.g. Germany
- 2014 installations: ~1,200 machines
- 2015 installations: ~4,000 machines
- 2016 installations: ~4,600 machines

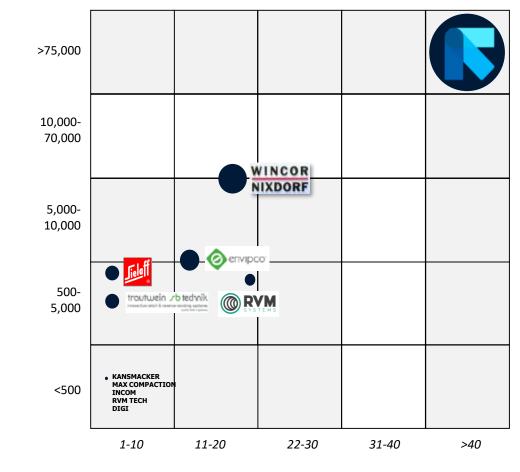
TOMRA is setting the standard for reverse vending for the next decade

A COMPLETE TRANSFORMATION OF THE PRODUCT PORTFOLIO IN PROGRESS

2012 Portfolio



2017 Portfolio


CURRENT DEPOSIT MARKETS*

* In addition, TOMRA has some activity in markets with refillable deposit systems like: Austria, Belgium, Chile, Czech Republic, France, Hungary, Poland and South Korea

COMPETITIVE LANDSCAPE

Number of RVM markets

• Annual revenue from RVM sales

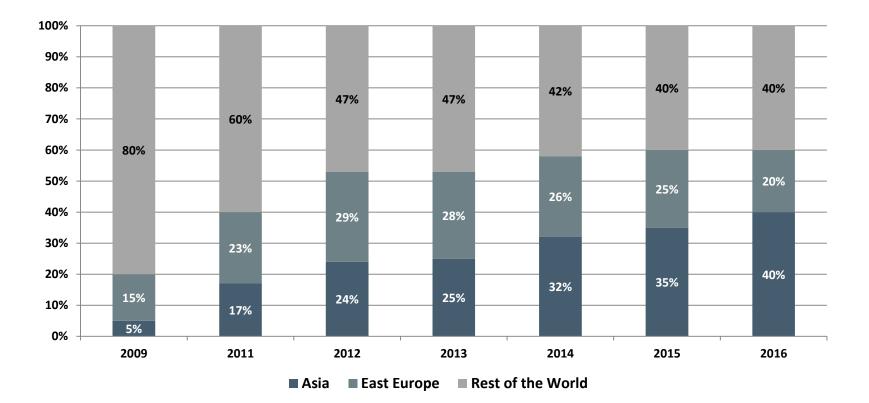
Source: TOMRA estimates and analysis

of installed RVM

Defend and nurture core deposit market business **Ensure continued relevance** 2 of deposit systems **Embrace new business** models **Expand scope of business**

- Increase differentiation towards competition
- Further reduce the cost of reverse vending systems
- Increase scope of existing deposit markets
- Assist in developing new deposit markets

- Capture new volume by entering new segments
- Create new revenue streams from Software/IT

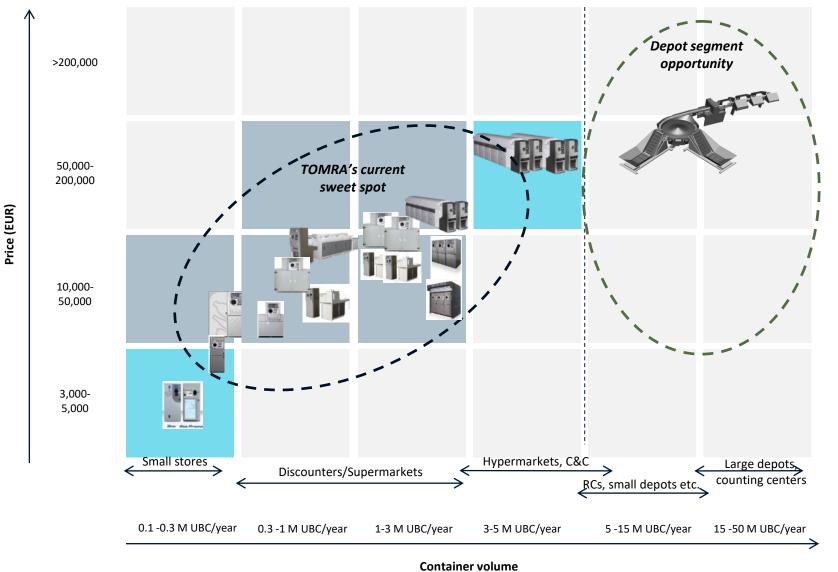

Target new material streams

A NEW SOURCING SETUP IS THE MAIN DRIVER FOR ACHIEVED COGS SAVINGS

COGS distribution by region (sourcing)

Percent of total


Source: TOMRA analysis


ENSURE CONTINUED RELEVANCE OF AUTOMATED DEPOSIT SYSTEMS

Handling method for deposit containers Percent of total 40 % 60 % Handled with RVS Handled manually

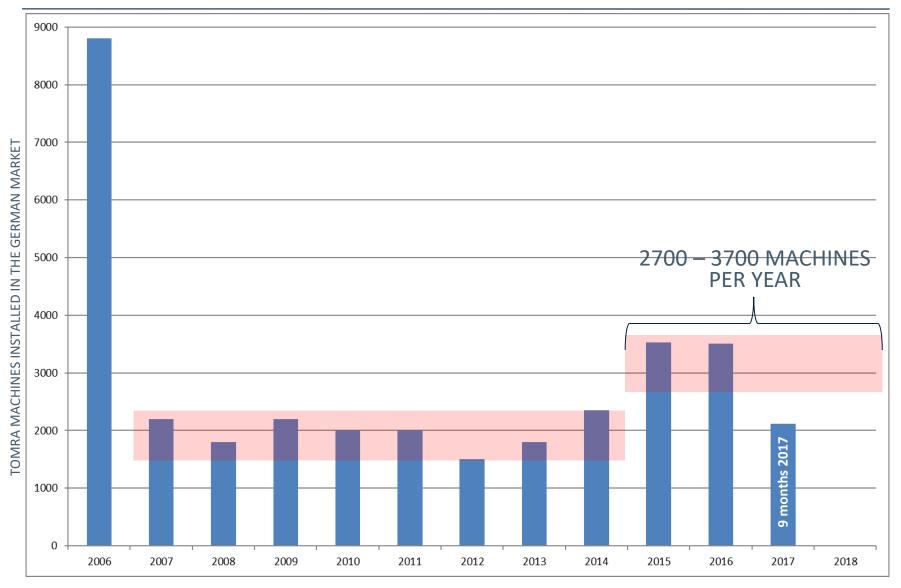
Share of containers sold with deposit Percent of total

ENTER NEW SEGMENTS

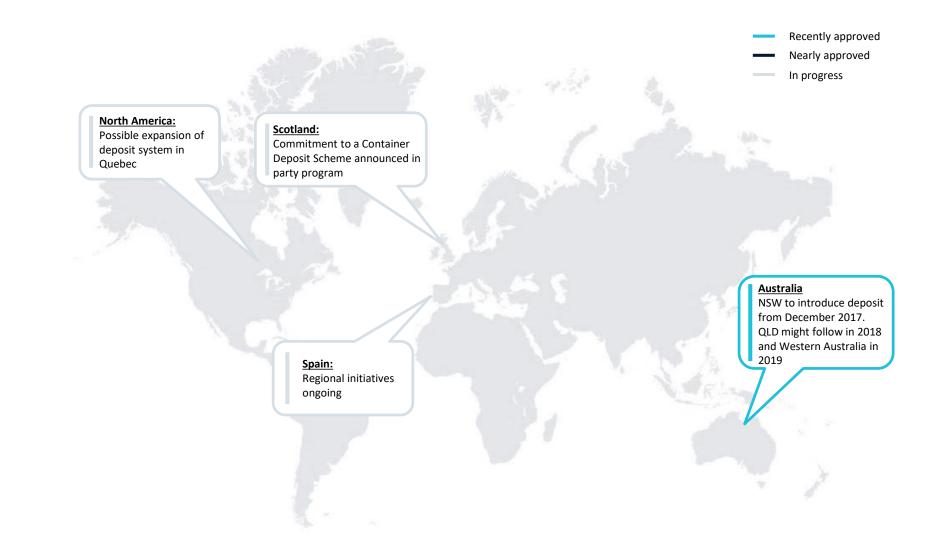
CREATE NEW REVENUE STREAMS FROM SW/IT

TOMRAPlus

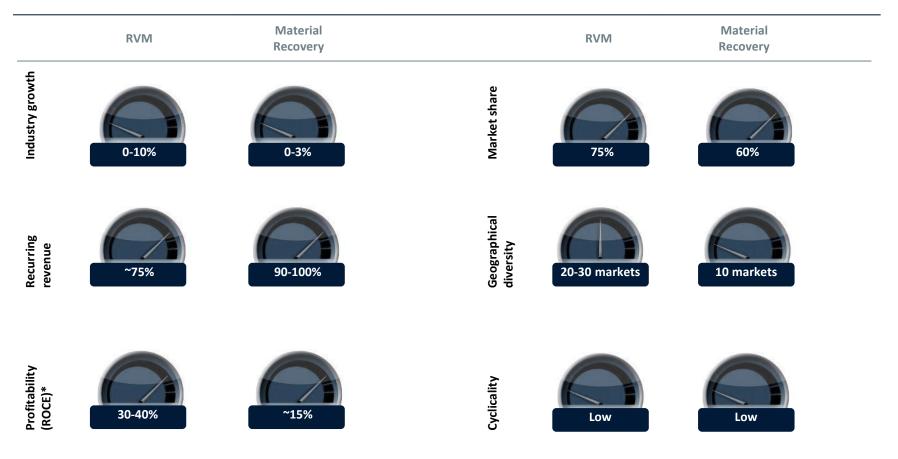
TOMRA ReAct/PANTO



Integrating hardware and software into attractive and engaging combos



GERMANY REPLACEMENT UPDATE


TOMRA

POTENTIAL NEW DEPOSIT MARKETS

COLLECTION SOLUTIONS – FINANCIAL DASHBOARD

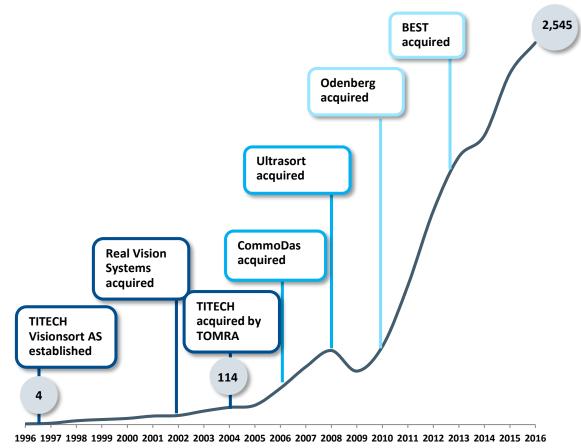
TARGETS 2013 - 2018

Yearly growth 4 – 8%

EBITA-margin 18% – 23%

30

TOMRA Sorting Solutions

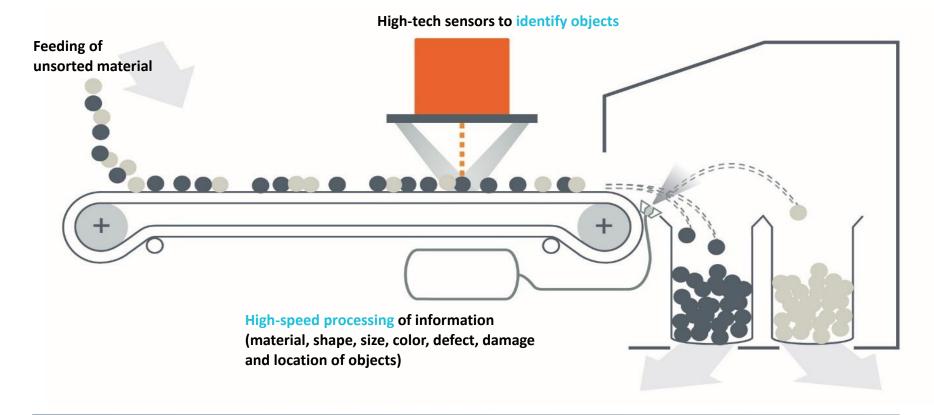


TOMRA

STRONG REVENUE GROWTH SINCE INCEPTION IN 1996

Revenue development and key milestones MNOK

- Total revenue growth (organic plus inorganic) CAGR of ~30% per year from 2004-2016
 - Average annual organic growth for the same period was ~17%
- Technology base and segment/application knowledge expanded both through acquisitions and inhouse ventures


SORTING VALUE PROPOSITION

TOMRA

HOW DOES SENSOR BASED SEPARATION WORK?

- High-tech sensors to identify objects
- High speed processing of information (material, shape, size, color, defect, damage and location of objects)
- Precise sorting by air jets or mechanical fingers
- Product **specific equipment design** often including multiple technologies to maximize sorting efficiency

ADOPTION OF SENSOR-BASED SORTING AT DIFFERENT MATURITY LEVELS

* In certain mining sub-segments, such as industrial minerals and diamonds, sensor-based sorting is a more mature technology

A COMMON SENSOR BASED TECHNOLOGY PORTFOLIO

Gamma- radiation 10 ⁻¹² 10 ⁻¹⁰ 10 ⁻¹⁰ X-ray 10 ⁻¹⁰ X-ray 10 ⁻¹⁰ 10 ⁻¹⁰ 10 ⁻¹⁰ X-ray 10 ⁻¹⁰ 10 ⁻¹⁰ 10 ⁻¹⁰ 10 ⁻¹⁰ 10 ⁻¹⁰ Visible light (VIS) 10 ⁻⁴ Near Infrared (NIR) 10 ⁻³ Infrared (IR) 10 ⁻¹⁰ Microwaves 10 ⁻¹⁰ Radio waves 10 ² 10 ³ 10 ³ Alternating current (AC) 10 ⁴		[m]
10-11 10 ⁻¹⁰ X-ray 10 ⁻⁹ 10 ⁻¹⁰ 10 ⁻⁹ 10 ⁻¹⁰ 10 ⁻⁹ 10 ⁻¹⁰ 10 ⁻⁹ 10 ⁻¹⁰ 10 ⁻¹⁰ Visible light (UV) 10 ⁻⁶ Near Infrared (NIR) 10 ⁻⁴ Infrared (IR) 10 ⁻² Microwaves 10 ⁻¹ Radio waves 10 ² 10 ³ 10 ³ Alternating current 10 ⁴	••••••	10 ⁻¹²
X-ray 10 ⁻⁹ 10 ⁻⁸ 10 ⁻⁸ 10 ⁻⁷ 10 ⁻⁶ 10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ 10 ⁻² 10 ⁻¹ Radio waves 10 ² 10 ²	radiation	10 ⁻¹¹
IO-8Ultraviolett (UV)Visible light (VIS)Near Infrared (NIR)Infrared (IR)Infrared (IR)MicrowavesIO-1Radio wavesAlternating currentIO4		10 ⁻¹⁰
Ultraviolett (UV) Visible light (VIS) Near Infrared (NIR) Infrared (IR) Microwaves Radio waves Alternating current 10 ⁻⁷ 10 ⁻⁶ 10 ⁻⁶ 10 ⁻³ 10 ⁻³ 10 ⁻² 10 ¹ 10 ²	X-ray	10 -9
Visible light (VIS)10-6Visible light (VIS)10-5Near Infrared (NIR)10-3Infrared (IR)10-2Microwaves10-1Radio waves102103104		10 ⁻⁸
Visible light (VIS) Near Infrared (NIR) Infrared (IR) Microwaves Radio waves Alternating current 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ 10 ⁻⁴ 10 ⁻³ 10 ⁻³ 10 ⁻² 10 ⁻¹	Ultraviolett (UV)	10 ⁻⁷
Near Infrared (NIR)10-3Infrared (IR)10-3Infrared (IR)10-2Microwaves10-1Radio waves102103104	Visible light (VIS)	10 -6
Near Infrared (NIR)10-3Infrared (IR)10-2Microwaves10-1Radio waves101101102103104		_ 10 -5
Infrared (IR) 10 ⁻² Microwaves 10 ⁻¹ 10 ¹ Radio waves 10 ² 10 ³ Alternating current 10 ⁴	Near Infrared (NIR)	
Microwaves 10 ⁻¹ 10 ¹ Radio waves 10 ² 10 ³ Alternating current 10 ⁴	Infrared (IR)	
101Radio waves102103103Alternating current104		
Radio waves102103103Alternating current104	Microwaves	10 -1
Radio waves102103103Alternating current104		1
Alternating current 10 ⁴		-
Alternating current	Radio waves	
U 10 ⁴	Alternating current	
	0	104

Sensor/ Technology	Material Property	Segment
RM (Radiometric)	Natural Gamma Radiation	Mining
XRT (X-ray transmission) Low Energy X-ray	Atomic Density	Recycling, Mining, Food
XRF	X ray fluorescence (Elemental Spectroscopy)	Recycling, Mining
COLOR (CCD Color Camera)	Reflection, Absorption, Transmission	Recycling, Mining, Food
Laser attenuation and PM (Photometric)	Monochromatic Reflection / Absorption of Laser Light Scattering analysis of Laser Light	Mining, Food
NIR / MIR (Near/Medium Infrared Spectrometry)	Reflection, Absorption (Molecular Spectroscopy)	Recycling, Mining, Food
LIBS	Laser induced breakdown spectroscopy	Recycling, Mining
EM (Electro- Magnetic sensor)	Conductivity, permeability	Recycling, Mining, Food

OUR PRODUCTS IS SERVING A WIDE RANGE OF DETECTION PARAMETERS

Color Removal of discolorations in monoand mixed-color material

Blemishes Objects with spots or other (small) blemishes are removed

Defects Removal of visible and invisible small and substantial defects

Structure Removal of soft, molded or rotten food

Density Detection of density differences

Damage Broken, split and damaged objects are detected and removed

Shape & Size Sort on length, width, diameter, area, broken-piece recognition, ...

Biometric Characteristics

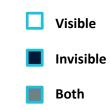
Sort based on water content and removal of micotoxyn contaminations

Foreign Material

Removal of foreign material in a material stream, e.g. insects, worms, snails or plastics in food applications

Fluo

Based on the chlorophyll level present in produce defects are removed



X-RAY

Analysis of objects based on their density and shape

Detox Removal of produce contaminated with aflatoxin

CROSS UTILIZING OUR PORTFOLIO TECHNOLOGIES

TITECH NIR + ODENBERG platform

Field Potato Sorter

- The NIR technology allows efficient removal of rocks, dirt and rotten potatoes before the potatoes are stored
- The solution opens up sorting of unwashed potatoes in a way that previously was not possible

BEST LASER + TOMRA mining platform

PRO Laser Duo

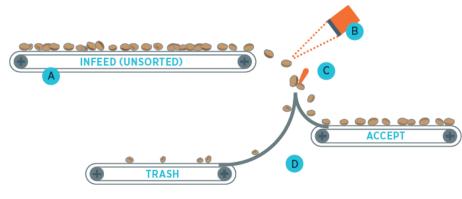
- The LASER technology allows detection of quartz of all colors. This opens for sorting of quartz itself, and gold bearing quartz mineralization
- The solution is unique in the market and further underlines our technological leadership

TITECH NIR + BEST LASER

Nimbus BSI

- An NIR sensor has been added to the NIMBUS machine platform
- The new machine increases our competitiveness in the nuts segment

Several more projects on combining technologies into new products in the pipeline



SORTING UNWASHED POTATOES: WORKING PRINCIPLE

The product is spread uniformly onto the infeed belt and will be scanned by cameras in the different inspection zones. A few milliseconds later one type of material will be rejected by intelligent finger ejectors, positioned at the end of the conveyor belt, while the good products continue their way along the sorting line.

- A Infeed (unsorted)
 B Full width NIR and Color Vision sensors
- lntelligent finger ejectors
- D Gentle handling convey chutes (optional)

DEFECTS & BLEMISHES REPORTING

Rot

Stones

Golf Ball

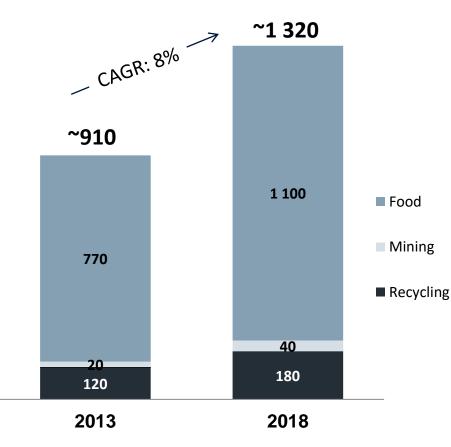
Reports can be generated with the following data:

Product Data

- + Average Length & Width mm(ins)
- + Length and Width distribution (size bins) mm(ins)
- + Total potato count #
 - + Total reject count #
- + Stone, soil clod, rot, other %

Sorter Operation Data

- + Belt speed, average belt fill %
- + Object counts/second
 - + Program running


- The Field Potato Sorter is ODENBERG's first venture into the **unwashed potato market**
- The machine uses unique near **infra-red technology** to remove soil clods, stones and rotten potatoes, in addition to the foreign material commonly found in fields such as golf balls, plastics, wood etc
- The FPS sorter should be used after a soil remover and is designed to fit existing grading equipment or be used as a standalone unit and can operate on harvested potato crop before and after storage
- The system also provides online potato size data for logging, plus sorter operating information

MARKET SIZE AND POTENTIAL

Total annual market size

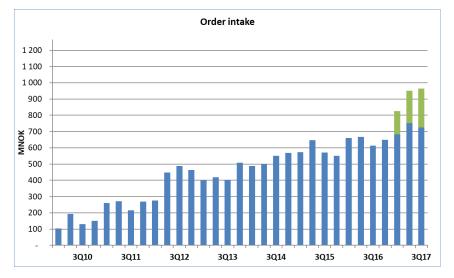
EUR million

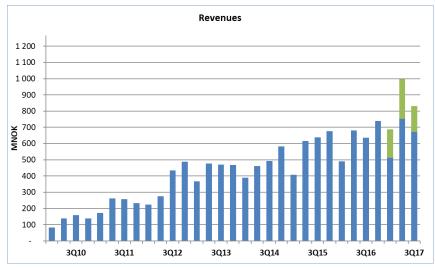
Market growth

- Market expected to grow at rate of around 7-9% per year
- A large part of growth from unlocking of dormant potential – only possible by developing new applications and technologies
- Some growth in "old world", but faster growth in "new world"

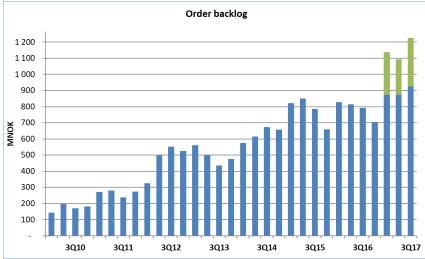
Source: TOMRA estimates and analysis

* Market size for food includes peeling, meat/process analytics, virgin materials and tobacco.




SORTING SOLUTIONS: OUR STRATEGY

	Food	Recycling	Mining		
	More than doubling of en	nerging markets revenue (but North Am of business in 2018)	erica and Europe still 60%		
1 Revenue growth of 10-15% over the period	New applications representing 25% of revenue in 2018	15 M€ growth in new segments	Significant expansion of sales network		
	New segments representing 10% of revenue in 2018	50% growth in service revenue	Succeed in high volume segments		
	Grow with existing customers and double service revenue				
Extend	Common sorting platform for all new product developments				
2 technology	Cross-utilization of sensor portfolio, e.g. NIR/BSI in food and laser in mining				
leadership	Extend current leadership in c	ore NIR and laser technologies, and dev	elop new cutting edge sensors		
	Design changes, e	economies of scale and purchasing powe	er to lower COGS		
3 Improve	Consolidation of manufac	cturing and sourcing; increased sourcing	from low cost countries		
operational efficiency	Streamlining of organiza	ation and processes to take out synergio	es across business units		
	Target to grow	profits at several percentage points fast	er than revenue		



BACKLOG DEVELOPMENT AND MOMENTUM

TOMRA Sorting Solutions (TSS) without Compac:

- Delivered order intake of 724 MNOK in the quarter, compared to 613 MNOK same quarter last year, up 22% currency adjusted
- Revenues came in at 673 MNOK (up from 636 MNOK in 3Q16)
- All time high order backlog of 924 MNOK, up from 793 MNOK at the end of September 2016

Compac

- Reported revenues of 158 MNOK in the quarter and finished the quarter with a backlog of 302 MNOK
- Estimated backlog conversion ratio in 4Q17, including Compac: 75%-80%*

FINANCIAL DASHBOARD – SORTING SOLUTIONS

TARGETS 2013 -2018

Yearly organic growth 10-15%

Geographical expansion

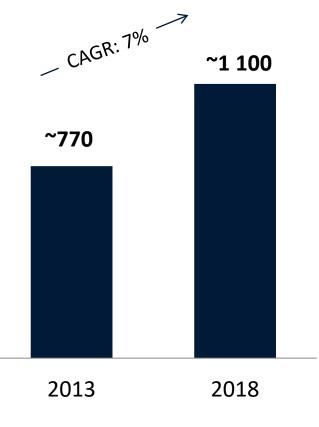
EBITA-margin 18-23%

(i) In markets served. Total food sorting (incl. rice and lane sorting*) 12-15%

43

YELD INTORS USAGE

GROWTH IN GLOBAL FOOD DEMAND WILL SPUR INVESTMENTS IN AUTOMATION

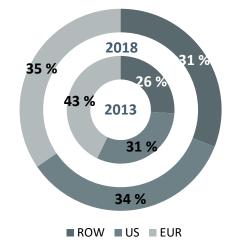

Drivers and trends

- Increasing food consumption in emerging markets, more mid-class consumers
- Industry focus on increased productivity and reducing costs through automation & quality control
- Higher quality demands from the consumers
- Stricter regulations from governments concerning food safety , health & traceability
- Shift towards packaged convenience food and fast food
- Risk of claims & recalls
 - Social media snowball effect (Twitter, Facebook, etc.)
- Globalization of brands and sourcing set up
- Scarcity & expense of (seasonal) manual labor
- Consolidation in the retail and processing sectors
- Adoption of technology in emerging markets

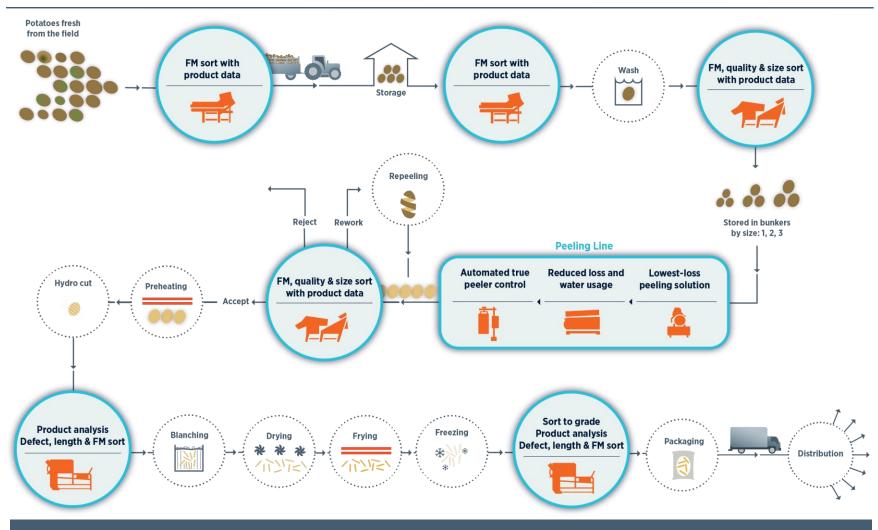
MARKET SIZE FOOD SORTING*

Total annual market size

EUR million



* Market sizes shown include peeling, meat/process analytics, virgin materials and tobacco.

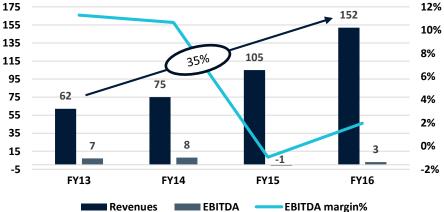

Market growth

- Total market for food sorting growing around 6-8% per year
- Approximately a third of total growth is dormant potential
 - only unlocked by development of new applications and technologies
- New world share grows but the two old world champions (Europe & Americas) remain strong

Expected development in geographical revenue contribution

WE ARE UNIQUELY POSITIONED TO SERVE THE ENTIRE VALUE CHAIN WITH OUR PRODUCT PLATFORM

Sales of potato-related products account for about 25% of the sales in the food division


INTRODUCTION TO COMPAC (ANNOUNCED 12.10.16)

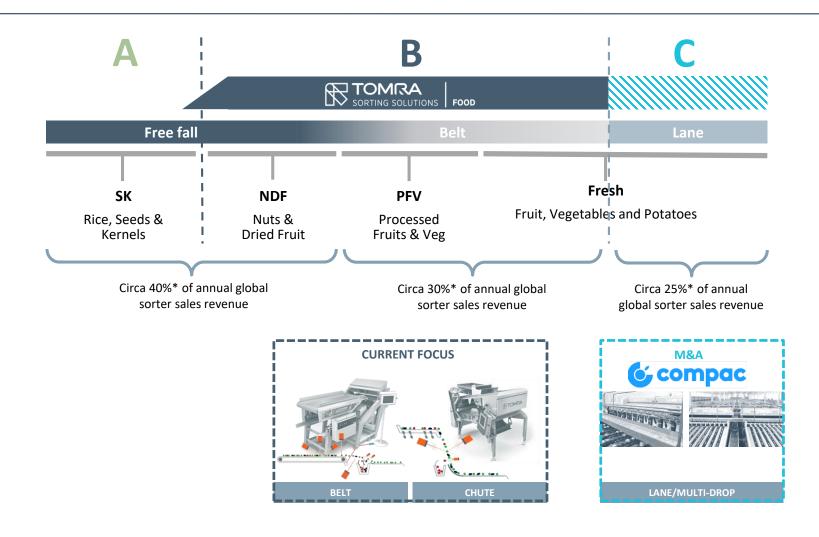
Introduction

- Compac is a New Zealand-based provider of post-harvest solutions and services to the global fresh produce industry
- Founded in 1984 by Hamish Kennedy with HQ in Auckland NZ and ٠ has around 700 employees
- Compac has a leading position within sorting of apples, kiwifruit, ٠ cherries, citrus, stonefruit, avocados and tomatoes
- The company designs, manufactures, sells and services packhouse automation systems that sort produce based on their weight, size, shape, colour, surface blemishes and internal quality
- Fruit handling equipment singulates fruits into lanes, in-feeds (wash ٠ and wax), inspects, sorts/grades and partly packages
- About 6,000 Compac sorting lanes have been sold worldwide in over 40 markets

Spectrim: Compac's latest sorter

- The sorter was launched in 2015
- Represents an unmatched capability of external defect detection and an advanced 3D imaging and modelling
- For sorting of apples, citrus, stone fruit and kiwi fruit •
- Uniform lighting that minimizes shadows and • reflections
- Sensors and cameras generate up to 500 images of • every piece of produce, creating an accurate 3D model of each fruit
- Three different wavelengths that can be configured to • target specific defects: color, blemishes, bruising

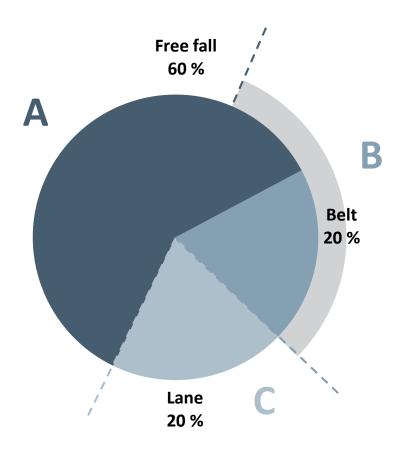
Key Financials (NZDm)¹


48

TRANSACTION RATIONALE ELABORATED

Attractive Market	 Lane sorting is a fast-growing adjacent segment with a ~8% historical CAGR and strong future outlook Key market trends drive further growth, especially in the developing markets as a substitute for manual labor as we see wages increase The industry is yet to mature and fully industrialize
Complimentary geographical footprint	 Geographic expansion: Utilizing the different footprint and strengths in certain markets Stronger in China together
Application fit expansion	• TOMRA is currently present in processed fruit and vegetables, Compac serves as a "natural" expansion also into fresh fruit
Confirming our leading position in food	 Lane and Bulk Sorting cater to same client needs, but offers complimentary functionality Possibility to create a comprehensive Food Sorting solution provider First mover advantage in combining Lane and Belt sorting: TOMRA to be the first company, which is active in all technology platforms used for sensor-based sorting of Food
Mutual benefits	 Potential in data capability, IoT and solution development Combine current offering: Bulk presorter in front of lanes Potato business: Utilizing TSS strength in potatoes and the upcoming demand for sizing Complimentary fit within food traceability and food safety (emerging demand)
Why Compac	 Strong potential. Ongoing and planned business improvement initiatives and funding to get in shape Strong brand name, recognized as the technology leader (Spectrim) Established complimentary footprint in the US, NZ, Australia and Latin America Good platform for growth

TOMRA HAS THE BROADEST FOOTPRINT WITHIN THE FOOD SORTING UNIVERSE



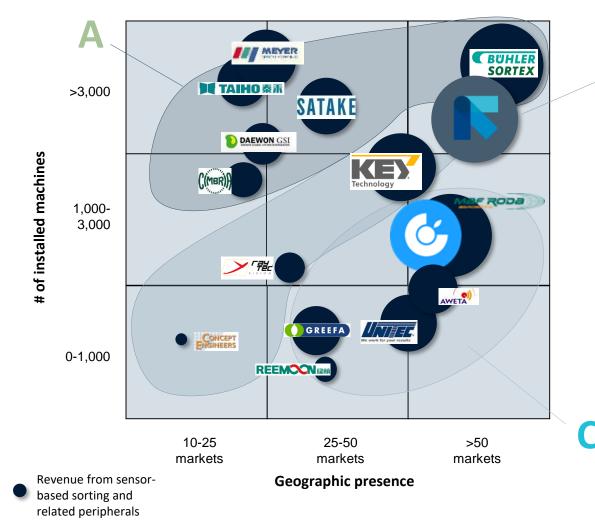
BULK SORTING

SINGULATED SORTING

50

THREE WAYS OF SORTING WITHIN THE FOOD SEGMENT

Free fall (Channel / Chute)					
Application	Seeds, rice, grains				
Companies	Buhler, Key, Best , Satake, Daewon, Hefei, Orange				
Sensor tech.	Camera (simple)				


Belt	
Application	Prepared /preserved veg. and fruit
Companies	Best , Key, Odenberg , Raytec
Sensor tech.	Several (complex)

Lane	
Application	Fresh produce
Companies	MAF, Aweta, Greefa, Compac
Sensor tech.	Several (medium)

Note: Piechart showing estimated total revenue within the food sorting segment

TOMRA

FOOD COMPETITIVE LANDSCAPE

TOMRA competitive positioning

• Size (revenues)

B

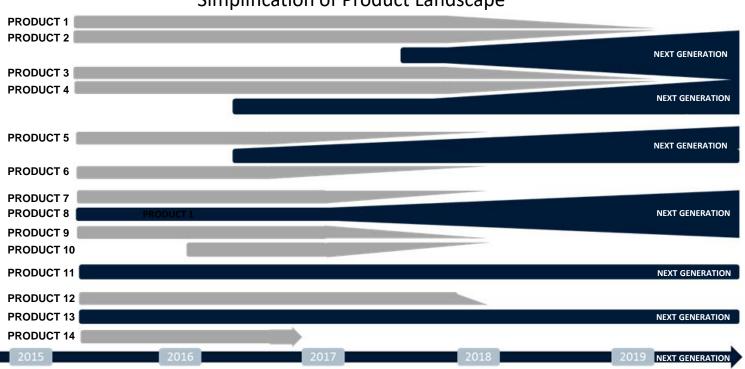
- Widest range of applications (150+)
- Broadest technology base
- Geographic reach (~80 countries)
- Market share in targeted segments
- Transformative solutions (Q-Vision)
- Market share: 40-50% in markets served*

Source: TOMRA estimates and analysis

* Total Food sorting (also including rice and lane sorting): 12-15%

OUR BROAD COVERAGE AND TECHNOLOGY BASE IS SETTING US APART IN BULK SORTING

	DRIED FRUIT	NUTS	FRESH CUT	FRUIT	VEGETABLES	MEAT	POTATOES	SEAFOOD
FOOD	 Apricots Craisins Figs Prunes Raisins 	 Almonds Cashews Hazelnuts Macadamias Peanuts Pecans Pistachios Seeds Walnuts 	 Baby leaves Iceberg lettuce Spinach Spring mix 	 Apples Blackberries Blueberries Cherries Citrus Cranberries Peaches & pears Raspberries Strawberries Tomatoes 	 Beans Beet Broccoli Carrots Corn Cucumbers IQF vegetables Jalapenos/ Peppers Onions Peas Pickles 	 Bacon bits Beef IQF meat Pork Pork rind 	 Washed French fries Unpeeled Peeled Potato chips Specialty products Sweet 	 Mussels Scallops Shrimps
SENSOR TECHNOLOGY	LASER NIR VIS X-RAY	LASER CAMERA X-RAY	LASER CAMERA	LASER CAMERA NIR VIS	LASER CAMERA NIR VIS	LASER CAMERA NIR	LASER CAMERA NIR VIS	LASER CAMERA NIR VIS X-RAY

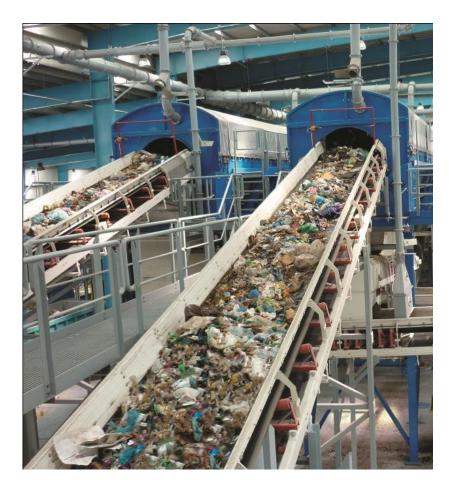


OUR FOOD CUSTOMERS

REDUCING COMPLEXITY: MERGING PLATFORMS FOR OUR NEXT GENERATION MACHINES

High-Level Product Roadmap FOOD (Illustrative)

Simplification of Product Landscape


14 platforms today will be reduced to 6 platforms over the next five years

ONCE INTO S AND AGAN

GLOBAL DRIVERS FOR THE RECYCLING SEGMENT

Drivers and trends

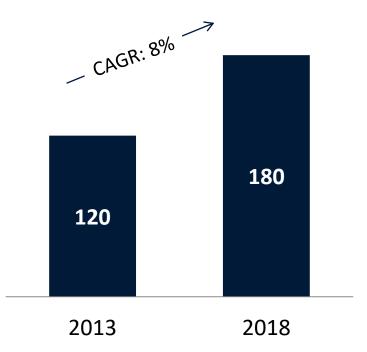
- Consumption and industry production level increase
- Favorable changes in **regulatory framework** (DSD, WEEE, ELV, etc)
- Commodity price levels and fluctuation
- Access to financing
- Demand for recycled raw materials
- Increasing **labor costs** in emerging world drive adoption of automatic sorting technologies
- Some countries in Western Europe partly saturated
- Pre-sorted (plastics) still door opener in new markets
- Municipal Solid Waste (MSW) important in emerging countries
- More aggressive pricing from competitors affect market

ONLY A FRACTION OF THE WASTE VOLUME IS HANDLED BY SENSOR BASED SORTING

Sensor based sorting is competing with different technologies

LEGISLATIVE FRAMEWORK - PROMOTING RECYCLING

	Description	Target	
Packaging Directive	 Rules on the production, marketing, use, recycling and refilling of containers of liquids for human consumption and on the disposal of used containers 2014 review included new targets 2015 revision includes lightweight plastic carrier bags 	 Recycling and reuse of municipal waste: 70% by 2030 Recycling and reuse of packaging waste: 80% by 2030 Phasing out landfilling by 2025 of recyclable waste in non hazardous landfills 	
Waste Electrical and Electronic Equipment (WEEE) Directive	 Collection, recycling and recovery targets for all types of electrical goods 10 categories: Large household appliances, Small household appliances, IT and telco equipment, Consumer equipment, Lighting equipment, Electrical and electronic tools, Toys, Leisure and sports equipment, Medical devices, Monitoring and control instruments, Automatic dispensers 	• The overall aim is for the EU to recycle at least 85% of electrical and electronics waste equipment by 2016	THERE AND ELECTROPICS CONDUCTION
Landfill Directive	 The objective of the Directive is to prevent or reduce as far as possible negative effects on the environment In particular: surface water, groundwater, soil, air, and on human health from the landfilling of waste by introducing stringent technical requirements for waste and landfills. 	 Amount of biodegradable municipal waste reduced to 50% in 2009 and to 35% in 2016 (compared to 1995 levels) 	
End of Life Vehicle (ELV) Directive	 Aims at reduction of waste arising from end-of-life vehicles The scope of the directive is limited to passenger cars and light commercial vehicles 	 Reuse and recycling: 85% Reuse and recovery: 95% 	


Source: www.ec.europa.eu, www.Eurometrec.org, wastemanagementworld.com,

MARKET SIZE RECYCLING

Total annual market size

EUR million

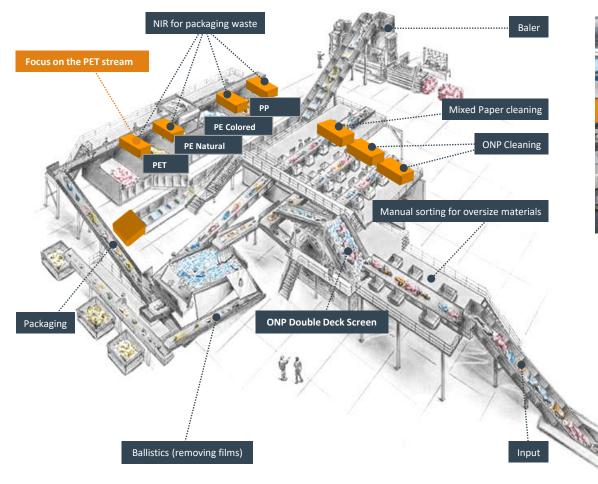
Market growth

- Market expected to grow at around 7-9% per year, lower than previous expectations due to economic slowdown
- Demand in old world flattening, while new markets expected to drive growth
- Existing segments will serve as a base, whilst the majority of growth will come from:
 - New geographies
 - New applications
 - New products

RECYCLING: APPLICATIONS AND SENSOR TECHNOLOGY

	HOUSEHOLD WASTE	PACKAGING	C & D	AUTOMOBILE SHREDDER	ELECTRONIC SCRAP
MATERIAL	 Hard plastics Plastic film Mixed paper RDF Metals Organics/ Biomass 	 Plastics Plastic film Cardboard Mixed paper Deinking paper Metal 	 Inert material Plastic film Metals Wood Paper & Cardboard Plastics 	 NF metal Stainless steel Copper cables Copper Brass Aluminum Meatball sorting 	 Printed circuit boards Non-ferrous metal concentrates Cables Copper Brass Stainless steel Meatball sorting
SENSOR TECHNOLOGY	NIR EM VIS XRT	NIR VIS EM	NIR VIS XRT EM	NIR VIS XRT EM COLOR XRF	XRT EM NIR COLOR XRF

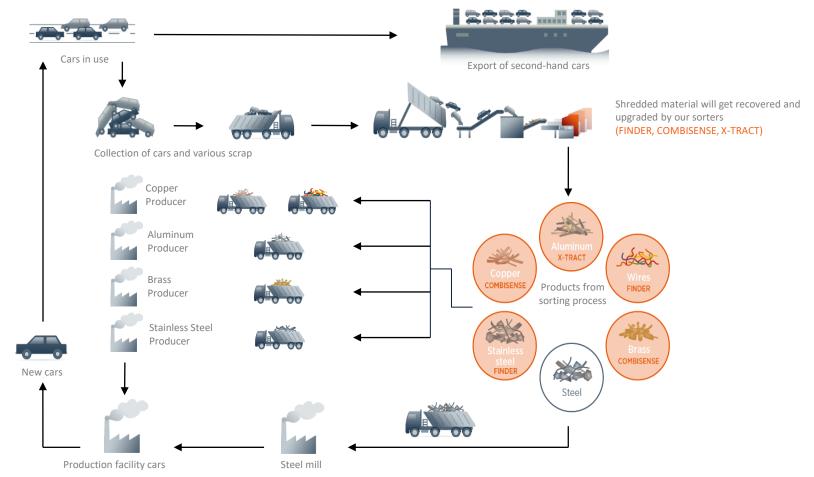
Mixed paper


PE/PP flakes

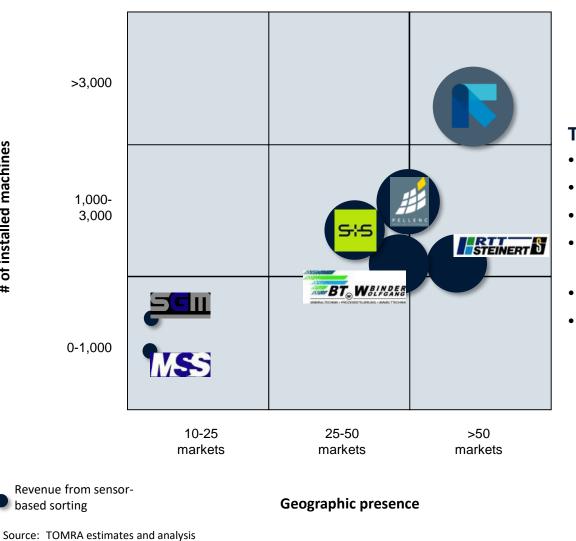
Cleaned wood

Brass

Copper Wire


AUTOMATED WITH TOMRA SORTING UNITS

Sorting of Municipal Solid Waste, Cyprus


SENSOR-BASED TECHNOLOGY CREATES VALUE IN VARIOUS PARTS OF A RECYCLING PROCESS

Life cycle of Steel from End-of-life vehicles

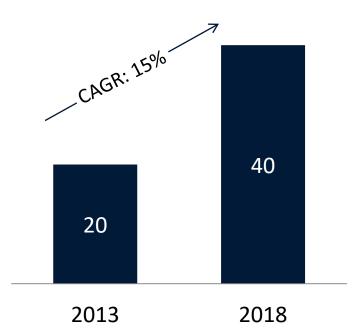
RECYCLING COMPETITIVE LANDSCAPE

TOMRA competitive positioning

- Largest installed base ٠
- **Highest revenues** ٠
- Broadest technology platform ٠
 - Highest number of applications and markets served
- Leading brand ٠
- Market share: 55-65% ٠

SOURCE INTORS RESOURCE

GLOBAL DRIVERS FOR THE MINING SEGMENT


- Energy costs and water stress are major drivers
- **Demand of all commodities** is expected to grow with increased population and urbanization in the drivers seat
- Increasing labor costs in emerging world drive adoption of automatic sorting technologies
- Mining companies capex impact the investment sentiment
- Sensor based sorting is considered to be a future solution
 - Hardest competition comes from alternative well proven technologies

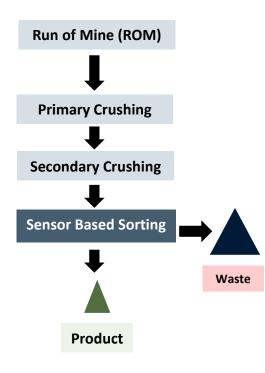
MARKET SIZE MINING

Total annual market size

EUR million

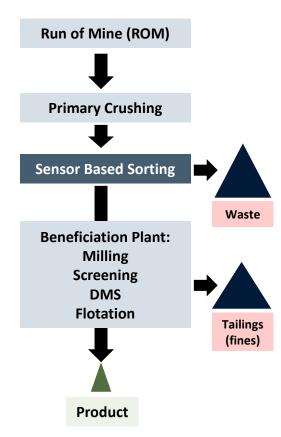
Market growth

- Capex has declined recent years
- Sensor based machines sales expected to grow at around 15% per year
 - Growth is however conditional on new applications and technologies being developed
- Sensor based sorting is still a technology to be accepted and growth in this niche has been limited in recent years


MINING: APPLICATIONS AND SENSOR TECHNOLOGY

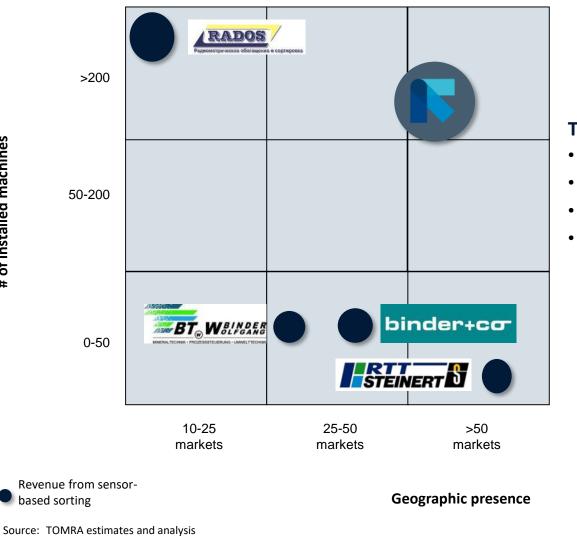
	INDUSTRIAL MINERALS	BASE & Fe METALS	FUEL/ ENERGY	PRECIOUS METALS	DIAMONDS & GEMS	METAL SLAG
COMMADDITY	• Calcite	•Copper	• Coal	• Gold	• Diamonds	Stainless steel
COMMODITY	Quarts	• Zinc	• Uranium	• Platinum	• Tanzanite	• Copper
	• Feldspar	• Nickel			• Colored	• Chrome
	 Magnesite 	 Tungsten 			gemstones	
	• Talcum	• Iron				
	• Dolomite	 Manganese 				
	• Salt	• Chromite				
SENSOR	COLOR	XRT	XRT	XRT	COLOR	XRT
TECHNOLOGY	XRT	COLOR	RM	COLOR	XRT	XRF
	NIR	EM		XRF	XRF	EM
	XRF	NIR		NIR	NIR	
	Calcite	Copper	Coal	Gold	Diamonds	Ferro Silica Slag

THE CONCEPT OF SENSOR-BASED SORTING IN MINING


Mining process: Industrial minerals

- 15% to 50% of the ROM can be rejected in an early stage of the process (application dependent)
- These low grade waste rocks don't need to be transported, crushed, grinded or further treated

Mining process: Metal mining



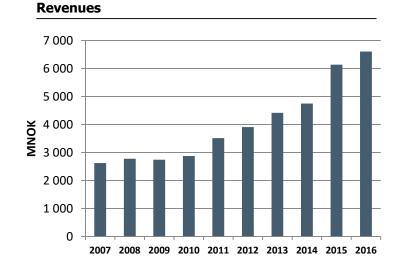
Potential new segment

Current segment

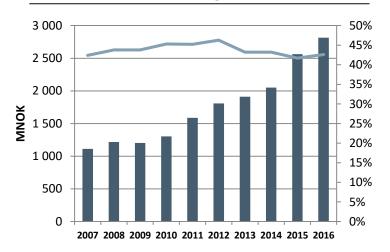
MINING COMPETITIVE LANDSCAPE

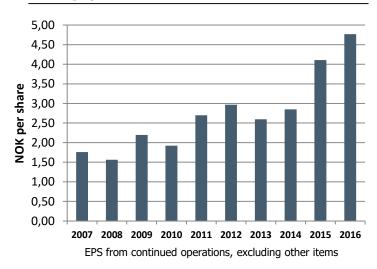
TOMRA competitive positioning

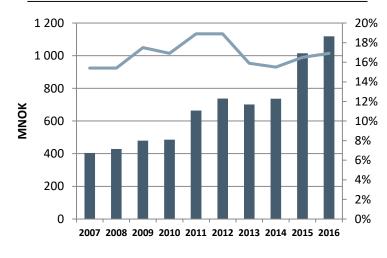
- Wide geographical coverage
- Broadest technology platform
- Leading brand
- Market share: 40-50%



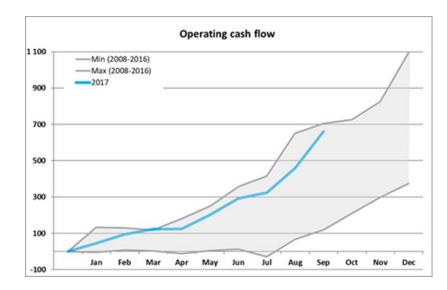
Historical financial performance




KEY FINANCIALS DEVELOPMENT


Gross Contribution and margin

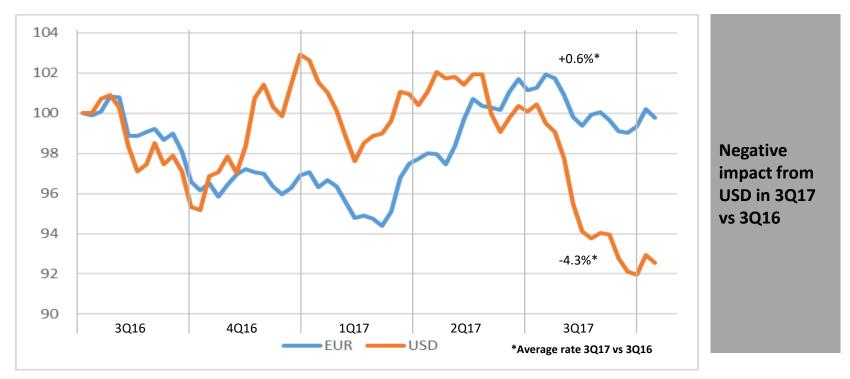
Earnings per share



EBITA and margin

FINANCIAL HIGHLIGHTS BALANCE SHEET, CASH FLOW AND CAPITAL STRUCTURE

Amounts in NOK million	30 Sep 2017	30 Sep 2016	31 Dec 2016
ASSETS	8,214	7,206	7,115
Intangible non-current assets	3,313	2,745	2,750
• Tangible non-current assets	849	755	801
• Financial non-current assets	307	322	342
Inventory	1,204	1,235	1,127
Receivables	2,067	1,815	1,696
Cash and cash equivalents	474	334	399
LIABILITIES AND EQUITY	8,214	7,206	7,115
• Equity	4,326	3,925	4,192
Minority interest	175	173	178
• Interest bearing liabilities	1,214	980	760
 Non-interest bearing liabilities 	2,499	2,128	1,985


Ordinary cashflow from operations

• 375 MNOK (348 MNOK in 3Q 2016)

Solidity

- 53% equity
- NIBD/EBITDA = 0.6x (Rolling 12 months)

CURRENCY

Revenues and expenses per currency;

NOTE: Rounded figures

	EUR*	USD	NOK	NZD	OTHER	TOTAL
Revenues	45 %	45 %	0 %	0 %	10 %	100 %
Expenses	40 %	30 %	5 %	5 %	20 %	100 %
EBITA	50 %	100 %	- 20 %	- 20 %	-10 %	100 %

* EUR includes DKK

CURRENCY EXPOSURE

Revenues and expenses per currency;

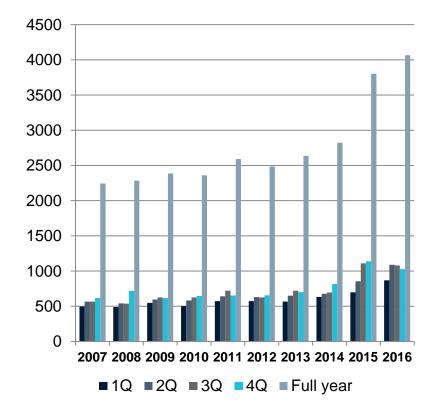
NOTE: Rounded figures

	EUR*	USD	ΝΟΚ	NZD	OTHER	TOTAL
Revenues	45 %	45 %	0 %	0 %	10 %	100 %
Expenses	40 %	30 %	5 %	5 %	20 %	100 %
EBITA	50 %	100 %	- 20 %	- 20 %	-10 %	100 %

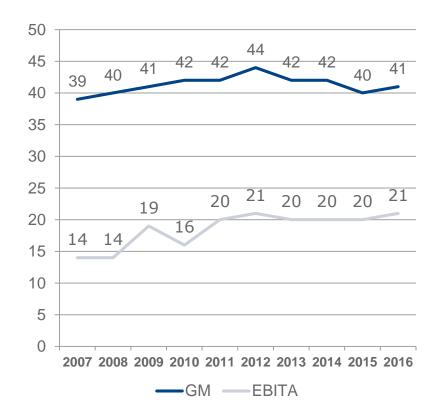
* EUR includes DKK

10% change in NOK towards other currencies will impact;

	Revenues	Expenses	EBITA	
EUR*	4.5%	4.0%	5.0%	
USD	4.5%	3.0%	10.0%	
NZD	0.0%	0.5%	-2.0%	
OTHER	1.0%	2.0%	-1.0%	
ALL	10.0%	9.5%	12.0%	

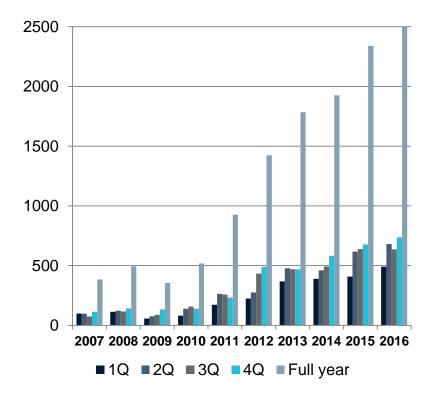

* EUR includes DKK

HEDGING POLICY

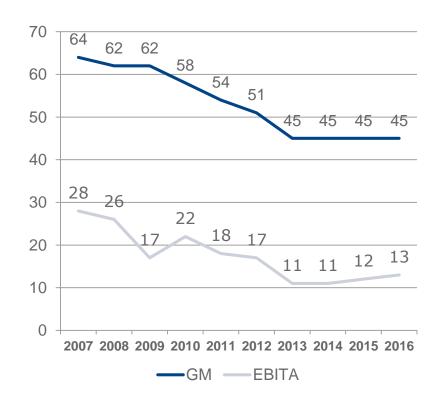

- TOMRA hedges B/S items that will have P/L impact on currency fluctuations
- TOMRA can hedge up to one year of future predicted cash flows. Gains and losses on these hedges are recorded in the finance line, not influencing EBITA

COLLECTION SOLUTIONS – SEGMENT FINANCIALS

Revenue development NOK million



Gross and EBITA margin development Percent



SORTING SOLUTIONS – SEGMENT FINANCIALS

Revenue development NOK million


Gross and EBITA margin development Percent

TOMRA SHAREHOLDER STRUCTURE

Top 10 shareholders as of 4 th of October 2017							
1	Investment AB Latour	39 000 000	26.3%				
2	Folketrygdfondet	8 679 393	5.9%				
3	The Bank of New York BNYM, Stichting Dep	7 845 000	5.3%	(NOM)			
4	Skandinaviska Enskilda SEB AS, UCITS V	4 775 557	3.2%	(NOM)			
5	Goldman Sachs & Co	4 247 510	2.9%	(NOM)			
6	Clearstream Banking	2 969 622	2.0%	(NOM)			
7	ODIN Norge	2 280 188	1.5%				
8	Danske invest Norske C/O Danske Capital A	2 190 530	1.6%	(NOM)			
9	Nordea Nordic Small	2 149 276	1.5%				
10	SEB Sverigefond SMAB	2 042 250	1.4%				
	Sum Top 10	76 179 346	51.5%				
	Other shareholders	71 840 732	48.5%				
	TOTAL (5,781 shareholders)	148 020 078	100.0%				

Shareholders by country

Source: VPS

DISCLAIMER

Copyright

The material in this Document (which may be a presentation, video, brochure or other material), hereafter called Document, including copy, photographs, drawings and other images, remains the property of TOMRA Systems ASA or third party contributors where appropriate. No part of this Document may be reproduced or used in any form without express written prior permission from TOMRA Systems ASA and applicable acknowledgements. No trademark, copyright or other notice shall be altered or removed from any reproduction

Disclaimer

This Document (which may be a presentation, video, brochure or other material), hereafter called Document, may include and be based on, inter alia, forward-looking information and statements that are subject to risks and uncertainties that could cause actual results to differ. The content of this Document may be based on current expectations, estimates and projections about global economic conditions, including the economic conditions of the regions and industries that are major markets for TOMRA Systems ASA and its subsidiaries and affiliates. These expectations, estimates and projections are generally identifiable by statements containing words such as "expects", "believes", "estimates" or similar expressions, if not part of what could be clearly characterized as a demonstration case. Important factors that could cause actual results to differ materially from those expectations include, among others, changes in economic and market conditions in the geographic areas and industries that are or will be major markets for TOMRA Systems ASA. Although TOMRA Systems ASA believes that its expectations and the Document are based upon reasonable assumptions, it can give no assurance that those expectations will be achieved or that the actual results will be as set out in the Document. TOMRA Systems ASA does not guarantee the accuracy, reliability whatsoever for any direct or consequential loss arising from the use of this Document or its contents. TOMRA Systems ASA consists of many legally independent entities, constituting their own separate identities. TOMRA Systems", "we" or "us" when we refer to TOMRA Systems ASA companies in general or where no useful purpose is served by identifying any particular TOMRA Company